The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

نویسندگان

  • Sven Heinicke
  • Michael S. Livstone
  • Charles Lu
  • Rose Oughtred
  • Fan Kang
  • Samuel V. Angiuoli
  • Owen White
  • David Botstein
  • Kara Dolinski
چکیده

Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproductive toxicology. Feed restriction in Swiss CD-1 mice.

Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.prince...

متن کامل

PorthoMCL: Parallel orthology prediction using MCL for the realm of massive genome availability

Background: Finding orthologous genes among multiple sequenced genomes is a primary step in comparative genomics studies. With the number of sequenced genomes increasing exponentially, comparative genomics becomes more powerful than ever for genomic analysis. However, the very large number of genomes in need of analysis makes conventional orthology prediction methods incapable of this task. Thu...

متن کامل

The Orthology Ontology: development and applications

BACKGROUND Computational comparative analysis of multiple genomes provides valuable opportunities to biomedical research. In particular, orthology analysis can play a central role in comparative genomics; it guides establishing evolutionary relations among genes of organisms and allows functional inference of gene products. However, the wide variations in current orthology databases necessitate...

متن کامل

Designating eukaryotic orthology via processed transcription units

Orthology is a widely used concept in comparative and evolutionary genomics. In addition to prokaryotic orthology, delineating eukaryotic orthology has provided insight into the evolution of higher organisms. Indeed, many eukaryotic ortholog databases have been established for this purpose. However, unlike prokaryotes, alternative splicing (AS) has hampered eukaryotic orthology assignments. The...

متن کامل

Detecting non-orthology in the COGs database and other approaches grouping orthologs using genome-specific best hits

Correct orthology assignment is a critical prerequisite of numerous comparative genomics procedures, such as function prediction, construction of phylogenetic species trees and genome rearrangement analysis. We present an algorithm for the detection of non-orthologs that arise by mistake in current orthology classification methods based on genome-specific best hits, such as the COGs database. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007